A Reinvestigation of Dioxobis(ethylenediamine)rhenium(V) Chloride and Dioxotetrakis(pyridine)rhenium(V) Chloride Dihydrate*

By Colin James Lyne Lock and Graham Turner
Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada

(Received 12 September 1977; accepted 27 October 1977)

Abstract

ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}\) (en $=$ ethylenediamine), monoclinic, $P 2_{1} / c, a=5.588(2), b=11.060(5), c=$ 16.359 (3) $\AA, \beta=100.78$ (2) ${ }^{\circ}, V=933.2 \AA^{3}, Z=4$, $D_{c}=2 \cdot 50, D_{o}=2.51(2) \mathrm{g} \mathrm{cm}^{-3} .\left[\mathrm{ReO}_{2} \mathrm{py}_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$ (py = pyridine), monoclinic, $C c, a=13.577$ (4), $b=$ 11.951 (3), $c=15.498$ (4) $\AA, \beta=116.3$ (1) ${ }^{\circ}, V=$ $2552.0 \AA^{3}, Z=4, D_{c}=1.78, D_{o}=1.79$ (1) $\mathrm{g} \mathrm{cm}^{-3}$. The single-crystal structure redetermination gave precise rhenium-oxygen bond lengths: $\mathrm{Re}-\mathrm{O}, 1.765$ (7) \AA (average) for $\left[\mathrm{ReO}_{2} \mathrm{en}_{2} \mid \mathrm{Cl} ; \mathrm{Re}-\mathrm{O}, 1.764\right.$ (13) \AA (average) for $\left[\mathrm{ReO}_{2} \mathrm{py}_{4} \mid \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}\right.$.

Introduction. We have undertaken a study of the correlation between $\mathrm{Re}-\mathrm{O}$ bond lengths and $\mathrm{Re}-\mathrm{O}$ vibrational stretching frequencies, and the force constants derived therefrom (Turner, 1976). It has become obvious that, although the X-ray crystal structures of some 20 compounds containing $\mathrm{Re}-\mathrm{O}$ bonds have been investigated, the errors in the $\mathrm{Re}-\mathrm{O}$ bond lengths are generally too high for the results to be used in deriving accurate mathematical relationships. To remedy this situation we have examined the crystal structures of a number of Re compounds. We have already reported the crystal structures of KReO_{4} (Lock \& Turner, 1975), $\mathrm{ReO}(\mathrm{OEt}) \mathrm{py}_{2} \mathrm{Cl}_{2}$ (Lock \& Turner, 1977a) and $\mathrm{Re}_{2} \mathrm{O}_{3} \mathrm{py}_{4} \mathrm{Cl}_{4}$ (Lock \& Turner, 1977b).
Three compounds containing ions of the type trans$\mathrm{ReO}_{2} L_{4}$ have had their crystal structures determined. $\mathrm{K}_{3} \mathrm{ReO}_{2}(\mathrm{CN})_{4}$ has been examined by both neutron diffraction (Fenn, Graham \& Johnson, 1971) and Xray diffraction (Murmann \& Schlemper, 1971) giving Re-O bond lengths of 1.773 (8) and 1.781 (3) \AA respectively. $\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}$ has also been the subject of two previous structural determinations by X-ray diffraction, using visually estimated film data (Sergienko, Porai-Koshits \& Khodaskova, 1974; Glowiak, Lis \& Jeziowska-Trzebiatowska, 1972), giving values of 1.73 (4) and 1.75 (4) \AA for the average $\mathrm{Re}-\mathrm{O}$ bond length. $\left[\mathrm{ReO}_{2} \mathrm{py}_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$ has an average bond length of 1.76 (3) \AA (Calvo, Krishnamachari \& Lock, 1971).
The ion $\left[\mathrm{ReO}_{2}(\mathrm{CN})_{4}\right]^{3-}$ has lower $\mathrm{Re}-\mathrm{O}$ vibrational stretching frequencies than the $\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right]^{+}$and

[^0]$\left\lceil\mathrm{ReO}_{2} \mathrm{py}_{4}\right\rceil^{+}$ions, with a resultant smaller $\mathrm{Re}-\mathrm{O}$ stretching-force constant. This 'weaker' $\mathrm{Re}-\mathrm{O}$ bond has been explained in terms of the stronger π-acceptor properties of the CN^{-}ligand, relative to the en and py ligands. Such arguments are incorrect. An increase in the π-acceptor ability of the non-oxygen ligands would tend to increase the strength of the $\mathrm{Re}-\mathrm{O}$ bond, since the O ligand has π-donor properties. The weaker $\mathrm{Re}-\mathrm{O}$ bonds in the cyanide complex are more probably a result of the large difference in overall charge between the cyanide and amine complex ions. From our correlations between bond length and stretching-force constant, we would predict that the $\mathrm{Re}-\mathrm{O}$ bond length in the complexes $\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}$ and $\left[\mathrm{ReO}_{2} \mathrm{py}_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$ would be about $0.02 \AA$ shorter than the corresponding bond length in $\mathrm{K}_{3} \mathrm{ReO}_{2}(\mathrm{CN})_{4}$. Such a shortening is probably beyond detection, because of the errors

Table 1. Data collection and processing

Data collected
Maximum 2θ
Total number of reflections
Observed reflections
Unobserved reflections
Rejected reflections
Standard deviation of standard reflections

$\left[\mathrm{ReO}_{2} \mathrm{en}_{2} \mid \mathrm{Cl}\right.$	$\left\|\mathrm{ReO}_{2} \mathrm{py}_{4}\right\| \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
$h, k, \pm l$	$h, k, \pm l$
55°	70°
3690	6266
1952	4330
673	918
147	745
3.5%	1.9%

Table 2. Additional crystal data

	$\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}$	$\left[\mathrm{ReO}_{2} \mathrm{py}_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
Crystal shape (faces)	$\begin{gathered} \{100\},\{010\} \\ \{001\} \end{gathered}$	$\begin{aligned} & (110)(110)(00 \mathrm{I}) \\ & (1 \overline{1} 2)(112)(111) \\ & (111) \end{aligned}$
Distances of faces from centre of crystal (mm)	$\begin{gathered} 0.095 \times 0.08 \\ \times 0.075 \end{gathered}$	$\begin{aligned} & 0.110 \times 0.084 \\ & \times 0.194 \times 0.185 \\ & \times 0.185 \times 0.191 \\ & \times 0.191 \end{aligned}$
Formula weight	373.7	$606 \cdot 1$
Absorption coefficient (cm^{-1})	131.2	$58 \cdot 6$
Direction of crystal alignment	2° from \mathbf{a}^{*}	3° from \mathbf{c}^{*}

involved in even the most accurate X-ray structural determinations of third-row transition-metal complexes.
$\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}$ was prepared by the conventional method (Johnson, Lock \& Wilkinson, 1964) and was recrystallized from 50% aqueous methanol at $5^{\circ} \mathrm{C}$. $\left[\mathrm{ReO}_{2} \mathrm{py}_{4} \mathrm{lCl} .2 \mathrm{H}_{2} \mathrm{O}\right.$ was prepared (Calvo et al., 1971) and recrystallized from reagent-grade pyridine. For both compounds, small single crystals were chosen for X-ray measurements. Unit-cell parameters were obtained by least-squares refinement of 15 accurately centred reflections in the range $20^{\circ}<2 \theta<30^{\circ}$ on a Syntex $P \overline{1}$ diffractometer. Intensity measurements were made at $22^{\circ} \mathrm{C}$ (graphite-monochromatized Mo $K a, \lambda=$ $0.71069 \AA, \omega-2 \theta$ scan). Scan rates were varied automatically from 2 to $24^{\circ} \mathrm{min}^{-1}$, depending on the intensity of the reflection. A reflection was considered observed with $I>3 \sigma(I)$, unobserved, but used in subsequent calculations, with $3 \sigma(I)>I>\sigma(I)$, and was rejected when $I \leq \sigma(I)$. Details of data collection and processing are shown in Table 1. For both compounds absorption corrections were applied, and secondaryextinction corrections (Larson, 1967) were used. The treatment of intensities, errors, and the application of the Lorentz-polarization correction have been discussed previously (Hughes, Krishnamachari, Lock, Powell \& Turner, 1977).

Crystal data for both compounds are shown in the Abstract and Table 2. The structures of the compounds were refined* using the known atomic coordinates (Głowiak et al., 1972; Calvo et al., 1971) as initial parameters. Scattering curves for all elements were taken from International Tables for X-ray Crystallog-

[^1]Table 3. Refinement of the structures

	$\left[\mathrm{ReO}_{2} \mathrm{en}_{2} \mid \mathrm{Cl}\right.$	[$\mathrm{ReO}_{2} \mathrm{py}_{4} \mid \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
Number of variables	69	128
$R_{1}{ }^{*}$	0.0590	0.0498
$R_{2}{ }^{*}$	0.0483	0.0420
1/w	$\begin{aligned} & 18.45-0.242\left\|F_{o}\right\| \\ & \quad+0.00159\left\|F_{"}\right\|^{2} \end{aligned}$	$\begin{aligned} & 18 \cdot 60-0.231\left\|F_{o}\right\| \\ & \quad+0.00106\left\|F_{n}\right\|^{2} \end{aligned}$
g^{\dagger}	9.8×10^{-7}	2.48×10^{-8}
Maximum shift in last cycle	$0 \cdot 02 \sigma$	0.2σ
Average shift in last cycle	0.003σ	0.05σ
Maximum peak in final difference synthesis	$\begin{aligned} & 0.61 \mathrm{e} \AA^{-3} \text {, at } 0.17, \\ & 0 \cdot 11,0.15 \\ & \quad(1.3 \AA \text { from Re) } \end{aligned}$	$\begin{aligned} & 0.63 \text { e } \AA^{-3} \text {, at } 0.08, \\ & 0.07,0.10 \\ & (0.4 \AA \text { from Re) } \end{aligned}$
Minimum valley in final difference synthesis	$\begin{aligned} & -0.54 \mathrm{e}^{-3} \text { at } 0.27, \\ & 0 \cdot 12,0.18 \\ & (1.4 \AA \text { from Re) } \end{aligned}$	$\begin{aligned} & -0.72 \mathrm{e} \dot{\mathrm{~A}}^{-3} \mathrm{at} \\ & -0.11,-0.09 \\ & 0.02 \\ & (0.7 \AA \text { from Re) } \end{aligned}$
$* R_{\mathrm{t}}=\Sigma\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\| / \Sigma \mid$ $\dagger g$ is the secondary-ex	${ }_{o}\left\|; R_{2}=\right\| \Sigma w\left(\left\|F_{o}\right\|\right.$ ction parameter	$\begin{aligned} & \left.\left\|F_{c}\right\|\right)^{2} /\left.\Sigma w\left\|F_{o}\right\|^{2}\right\|^{1 / 2} \\ & \text { son, 1967). } \end{aligned}$

raphy (1974) with anomalous-scattering corrections for Re and Cl taken from the same source.

Weighting schemes were introduced so that $w\left(\left|F_{0}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$ was locally independent of F_{o} and $\sin \theta / \lambda$. Details of the refinements are shown in Table 3. Final atomic coordinates are listed in Table 4. Selected interatomic distances and angles for $\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}$ are shown in Table 5, and for $\left[\mathrm{ReO}_{2} \mathrm{py}_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$ in Table 6.*

[^2]Table 4. Atomic coordinates
$\left|\mathrm{ReO}_{2} \mathrm{en}_{2}\right| \mathrm{Cl}$

	x	y	z
Re	y	$z=0.24479(6)$	$0.11021(3)$
C 1	$0.1539(5)$	$0.7813(3)$	$0.05937(2)$
$\mathrm{O}(1)$	$0.486(1)$	$0.0044(6)$	$0.2593(5)$
$\mathrm{O}(2)$	$0.002(1)$	$0.2141(6)$	$0.2192(4)$
$\mathrm{N}(1)$	$0.191(1)$	$0.0635(8)$	$0.1094(5)$
$\mathrm{N}(2)$	$0.485(1)$	$0.2384(8)$	$0.1978(5)$
$\mathrm{N}(3)$	$0.305(1)$	$0.1555(8)$	$0.3695(5)$
$\mathrm{N}(4)$	$0.008(1)$	$0.9779(7)$	$0.2846(5)$
$\mathrm{C}(1)$	$0.406(2)$	$0.108(1)$	$0.0740(6)$
$\mathrm{C}(2)$	$0.461(2)$	$0.237(1)$	$0.1050(6)$
$\mathrm{C}(3)$	$0.264(2)$	$0.042(1)$	$0.4186(6)$
$\mathrm{C}(4)$	$0.018(2)$	$0.990(1)$	$0.3747(7)$

$\left\langle\mathrm{ReO}_{2} \mathrm{py}_{4}\right| \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$

	x	v	z
Re	$0 \cdot 0$	0.0	$0 \cdot 0$
Cl	-0.0666 (3)	0.3741 (2)	$0 \cdot 1262$ (2)
O(1)	$0 \cdot 1035$ (9)	-0.0795 (9)	-0.0137 (8)
O(2)	-0.0910 (8)	0.0844 (9)	0.0225 (7)
$\mathrm{O}(3)$	0.2221 (6)	0.2854 (7)	0.4811 (6)
O(4)	$0 \cdot 0240$ (9)	0.385 (1)	0.3551 (8)
N(1)	-0.046 (1)	-0.146 (1)	0.057 (1)
N(2)	-0.114 (1)	-0.029 (1)	-0.146 (1)
N(3)	0.061 (1)	0.145 (1)	-0.042 (1)
N(4)	$0 \cdot 122$ (1)	0.039 (1)	$0 \cdot 142$ (1)
C(11)	-0.100 (1)	-0.135 (1)	$0 \cdot 109$ (1)
C(12)	-0.135 (2)	-0.225 (2)	$0 \cdot 147$ (2)
C(13)	-0.105 (1)	-0.333 (1)	0.129 (1)
C(14)	-0.045 (1)	-0.340 (1)	0.082 (1)
C(15)	-0.015 (1)	-0.247 (1)	0.043 (1)
C(21)	-0.096 (2)	-0.111 (2)	-0.194 (1)
C(22)	-0.180 (2)	-0.137 (2)	-0.287 (1)
C(23)	-0.268 (1)	-0.066 (1)	-0.333 (1)
$\mathrm{C}(24)$	-0.284 (1)	0.019 (1)	-0.277 (1)
C(25)	-0.203 (1)	0.039 (1)	-0.186 (1)
C(31)	$0 \cdot 123$ (1)	$0 \cdot 133$ (2)	-0.091 (1)
C(32)	0.157 (2)	0.224 (2)	-0.125 (1)
C(33)	$0 \cdot 131$ (2)	0.333 (2)	-0.104 (1)
C(34)	0.072 (1)	0.347 (1)	0.051 (1)
C(35)	$0 \cdot 040$ (1)	0.251 (1)	-0.020 (1)
C(41)	$0 \cdot 108$ (1)	$0 \cdot 122$ (1)	$0 \cdot 105$ (1)
C(42)	$0 \cdot 173$ (1)	$0 \cdot 143$ (1)	0.290 (1)
C(43)	0.272 (1)	0.088 (1)	$0 \cdot 336$ (1)
C(44)	0.292 (2)	0.002 (2)	0.289 (2)
C(45)	$0 \cdot 216$ (1)	-0.020 (1)	$0 \cdot 188$ (1)

Table 5. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}$

$\mathrm{Re}-\mathrm{O}(1)$	1.769 (7)	$\mathrm{Re}-\mathrm{N}(3)$	$2 \cdot 152$ (8)	$\mathrm{N}(3)-\mathrm{C}(3)$	1.53 (1)
$\mathrm{Re}-\mathrm{O}(2)$	1.761 (7)	$\mathrm{Re}-\mathrm{N}(4)$	$2 \cdot 191$ (8)	N(4)-C(4)	1.47 (1)
$\mathrm{Re}-\mathrm{N}(1)$	$2 \cdot 154$ (8)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.51 (2)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.53 (2)
$\mathrm{Re}-\mathrm{N}(2)$	$2 \cdot 150$ (9)	$\mathrm{N}(2)-\mathrm{C}(2)$	1.50 (1)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.54 (2)
$\mathrm{O}(1)-\mathrm{Re}-\mathrm{O}(2)$	179.3 (3)	$\mathrm{O}(2)-\mathrm{Re}-\mathrm{N}(4)$	$90 \cdot 4$ (3)	$\mathrm{Re}-\mathrm{N}(2)-\mathrm{C}(2)$	111.8 (6)
$\mathrm{O}(1)-\mathrm{Re}-\mathrm{N}(1)$	89.1 (3)	$\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(2)$	$80 \cdot 0$ (3)	$\mathrm{Re}-\mathrm{N}(3)-\mathrm{C}(3)$	108.5 (6)
$\mathrm{O}(1)-\mathrm{Re}-\mathrm{N}(2)$	89.7 (3)	$\mathrm{N}(3)-\mathrm{Re}-\mathrm{N}(4)$	79.3 (3)	$\mathrm{Re}-\mathrm{N}(4)-\mathrm{C}(4)$	111.4 (6)
$\mathrm{O}(1)-\mathrm{Re}-\mathrm{N}(3)$	90.0 (3)	$\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(4)$	101.0 (3)	$\mathrm{N}(1)-\mathrm{C} 1)-\mathrm{C}(2)$	107.5 (9)
$\mathrm{O}(1)-\mathrm{Re}-\mathrm{N}(4)$	89.0 (3)	$\mathrm{N}(2)-\mathrm{Re}-\mathrm{N}(3)$	99.7 (3)	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	108.5 (9)
$\mathrm{O}(2)-\mathrm{Re}-\mathrm{N}(1)$	90.7 (3)	$\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(3)$	179.0 (3)	$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	105.6 (8)
$\mathrm{O}(2)-\mathrm{Re}-\mathrm{N}(2)$	90.9 (3)	$\mathrm{N}(2)-\mathrm{Re}-\mathrm{N}(4)$	178.4 (3)	$\mathrm{N}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	111.3 (9)
$\mathrm{O}(2)-\mathrm{Re}-\mathrm{N}(3)$	$90 \cdot 3$ (3)	$\mathrm{Re}-\mathrm{N}(1)-\mathrm{C}(1)$	109.1 (6)		
Possible hydrogen-bonding distances					
$\mathrm{Cl}-\mathrm{N}(1)$	$3 \cdot 25$ (1)	$\mathrm{Cl}-\mathrm{N}(1)^{\prime}$	3.41 (1)	$\mathrm{O}(2)-\mathrm{N}(2)^{\prime}$	2.86 (1)
$\mathrm{Cl}-\mathrm{N}(3)$	3.37 (1)	$\mathrm{O}(1)-\mathrm{N}(4)$	2.88 (1)	$\mathrm{O}(2)-\mathrm{N}(4)^{\prime}$	2.92 (1)
$\mathrm{Cl}-\mathrm{N}(3)^{\prime}$	3.36 (1)	$\mathrm{O}(1)-\mathrm{N}(2)$	$3 \cdot 02$ (1)		

Table 6. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{ReO}_{2} \mathrm{py}_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$

Pyridine rings

	$i=1$	$i=2$	$i=3$	$i=4$
$\mathrm{C}(i 1)-\mathrm{N}(i)-\mathrm{C}(i 5)$	$119(1)$	$123(1)$	$119(1)$	$115(1)$
$\mathrm{N}(i)-\mathrm{C}(i 1)-\mathrm{C}(i 2)$	$124(1)$	$118(1)$	$121(2)$	$126(1)$
$\mathrm{C}(i 1)-\mathrm{C}(i 2)-\mathrm{C}(i 3)$	$116(1)$	$120(2)$	$119(2)$	$119(2)$
$\mathrm{C}(i 2)-\mathrm{C}(i 3)-\mathrm{C}(i 4)$	$118(1)$	$117(1)$	$120(2)$	$118(2)$
$\mathrm{C}(i 3)-\mathrm{C}(i 4)-\mathrm{C}(i 5)$	$123(1)$	$119(1)$	$118(1)$	$120(2)$
$\mathrm{C}(i 4)-\mathrm{C}(i 5)-\mathrm{N}(i)$	$119(1)$	$120(2)$	$123(2)$	$121(1)$

Discussion. The structure of $\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}$ has been discussed previously (Glowiak et al., 1972; Sergienko et al., 1974) and our atomic coordinates do not differ significantly from the previous refinements, though our e.s.d.'s are considerably lower. On the basis of these
more accurate data we can say that the average $\mathrm{Re}-\mathrm{O}$ bond length is 1.765 (7) \AA. The two independent $\mathrm{Re}-\mathrm{O}$ bond lengths $[1.769$ (7) and 1.761 (7) \AA] do not differ significantly, and there is no need to invoke hydrogen bonding to explain the difference in $\mathrm{Re}-\mathrm{O}$ bond
lengths (contra Sergienko et al., 1974). Bond lengths and angles within the ethylenediamine ligands are normal [$\mathrm{C}-\mathrm{C}$ bond lengths 1.53 (2), 1.54 (2) $\AA, \mathrm{C}-\mathrm{N}$ bond lengths 1.47 (1)-1.53 (1) \AA, bond angles in the range $\left.107(1)-111(1)^{\circ}\right]$. The chloride ion is weakly hydrogen bonded to four N atoms [3.25(1)-3.41 (1) $\AA 1$. The packing in the structure has previously been discussed in some detail (Sergienko et al., 1974).

The structure of $\left[\mathrm{ReO}_{2} \mathrm{py}_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$ has also been discussed previously (Calvo et al., 1971) and our parameters do not differ significantly from the previous parameters, although our e.s.d.'s are considerably lower. The two independent $\mathrm{Re}-\mathrm{O}$ bonds [1.782 (13) and 1.745 (12) $\AA 1$ do not differ at the 3σ confidence level, although they do at the 2σ level. The $\mathrm{Re}-\mathrm{N}$ distances obtained for both the pyridine and ethylenediamine complexes are in good agreement with previous values obtained for $\mathrm{Re}-\mathrm{N}$ single bonds (Lock \& Turner, 1977a,b). Although the atoms within the pyridine rings were allowed to vary independently, the bond lengths and angles obtained are in excellent agreement with the expected values (Bak, HansenNygaard \& Rastrup-Andersen, 1958). The 'edge on' configuration of the pyridine rings, and the slight tilt $\left(\sim 10^{\circ}\right)$ of these rings from idealized $D_{4 h}$ symmetry are discussed in some detail elsewhere (Calvo et al., 1971). The important steric requirement of pyridine rings, particularly the effects of the α-hydrogen, has also been discussed (Lock \& Turner, 1977b). The two water molecules are necessary in the formation of the structure. The anhydrous compound can be prepared only with difficulty, and no evidence was ever found of a monohydrate (contra Beard, Calhoun, Casey \&

Table 7. Bond lengths and bond orders

Compound	$\mathrm{Re}-\mathrm{O}$ bond length (\AA)	Bond order* Reference	
Sum of $\mathrm{Re}^{\mathrm{v}}-\mathrm{O}$ covalent radii	2.04	1.00*	a
$\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}$	1.765 (7)	$2 \cdot 00^{*}$	b
KReO_{4}	1.723 (4)	2.23	c
$\mathrm{K}_{3} \mathrm{ReO}_{2}(\mathrm{CN})_{4}$	1.781 (3)	1.92	d
$\mathrm{ReO}(\mathrm{OEt}) \mathrm{Cl}_{2} \mathrm{py}_{2}$	1.684 (7)	2.45	e
	1.896 (6)	1.44	
$\left.\mid \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]_{2}\left[\mathrm{Re}_{2} \mathrm{O}_{3}(\mathrm{CN})_{8} \mid\right.$	1.698 (7)	2.37	f
	1.915 (1)	1.37	
$\mathrm{ReOCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$	1.63 (2)	2.81	g
	$2 \cdot 27$ (2)	0.56	
$\left[\mathrm{ReO}(\mathrm{OH}) \mathrm{en}_{2} \mid\left[\mathrm{ClO}_{4}\right]_{2}\right.$	1.72 (1)	2.24	h
	1.832 (8)	1.69	

References: (a) Cotton \& Lippard (1965); (b) this work; (c) Lock \& Turner (1975); (d) Murmann \& Schlemper (1971); (e) Lock \& Turner (1977a); (f) Shandles, Schlemper \& Murmann (1971); (g) Frais \& Lock (1972); (h) Betzner, Brown, Lock, Park \& Turner (1977).

[^3]Murmann, 1968) although an oxidation product, $\left\lceil\mathrm{ReO}_{2} \mathrm{py}_{4}\right\rceil\left(\mathrm{ReO}_{4}\right)$, (orthorhombic orange prisms) was obtained from aqueous solutions of $\left[\mathrm{ReO}_{2} \mathrm{py}_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$. The structure is held together by weak hydrogen bonds between the chloride ions, water molecules and pyridine rings (see Table 6 for distances).

The values obtained for the $\mathrm{Re}-\mathrm{O}$ bond lengths in these compounds, 1.765 (7) \AA (average) for $\left[\mathrm{ReO}_{2} \mathrm{en}_{2}\right] \mathrm{Cl}$ and 1.764 (13) \AA (average) for $\left[\mathrm{ReO}_{2} \mathrm{py}_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$, are very close to the value predicted from correlations between bond length and force constant ($1.762 \AA$) (Turner, 1976). The bond length obtained for the ethylenediamine complex is shorter than the $\mathrm{Re}-\mathrm{O}$ bond in $\mathrm{K}_{3} \mathrm{ReO}_{2}(\mathrm{CN})_{4}[1.781(3) \AA]$ at the 95% confidence level. According to the model of π-bonding from filled oxygen p orbitals to empty orbitals ($d_{x z}$ and $d_{y z}$) on the Re atom (Johnson et al., 1964) the complexes $\left[\mathrm{ReO}_{2} \mathrm{en}_{2} \mid \mathrm{Cl}\right.$ and $\left|\mathrm{ReO}_{2} \mathrm{py}_{4}\right| \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$ contain genuine $\mathrm{Re}-\mathrm{O}$ double bonds. Using a value of $2.04 \AA$ for a Re-O single bond [derived from the sum of covalent radii (Cotton \& Lippard, 1965)] it is now possible to derive Pauling bond orders for $\mathrm{Re}-\mathrm{O}$ bonds.

Selected values of bond orders for $\mathrm{Re}-\mathrm{O}$ compounds are shown in Table 7.

We thank the National Research Council of Canada for financial support of this work.

References

Bak, B., Hansen-Nygaard, L. \& Rastrup-Andersen, J. (1958). J. Mol. Spectrosc. 2, 361-368.

Beard, J. H., Calhoun, C., Casey, J. \& Murmann, R. K. (1968). J. Am. Chem. Soc. 90, 3389-3394.

Betzner, G., Brown, I. D., Lock, C. J. L., Park, J. J. \& Turner, G. (1977). Can.J. Chem. To be published.
Calvo, C., Krishnamachari, N. \& Lock, C. J. L. (1971). J. Cryst. Mol. Struct. 1, 161-172.

Cotton, F. A. \& Lippard, S. J. (1965). Inorg. Chem. 4, 1621-1629.
Fenn, R. H., Graham, A. J. \& Johnson, N. P. (1971). J. Chem. Soc. A, pp. 2880-2883.
Frais, P. W. \& Lock, C. J. L. (1972). Can. J. Chem. 50, 1811-1818.
Glowiak, T., Lis, T. \& Jeżowska-Trzebiatowska, B. (1972). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 20, 957-968.

Hughes, R. P., Krishnamachari, N., Lock, C. J. L., Powell, J. \& Turner, G. (1977). Inorg. Chem. 16, 314319.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72-92, 150. Birmingham: Kynoch Press.
Johnson, N. P., Lock, C. J. L. \& Wilkinson, G. (1964). J. Chem. Soc. pp. 1054-1066.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Lock, C. J. L. \& Turner, G. (1975). Acta Cryst. B31, 1764-1765.

Lock, C. J. L. \& Turner, G. (1977a). Can. J. Chem. 55, 333-339.
Lock, C. J. L. \& Turner, G. (1977b). Can. J. Chem. In the press.
Murmann, R. K. \& Schlemper, E. O. (1971). Inorg. Chem. 10. 2352-2354.

Sergienko, V. S., Porai-Koshits, M. A. \& Khodaskova, T. S. (1974). J. Struct. Chem. 15, 250-255.

Shandles, R., Schlemper, E. O. \& Murmann, R. K. (1971). Inorg. Chem. 10, 2785-2789.

Turner, G. (1976). PhD Thesis, McMaster Univ., Hamilton, Ontario, Canada.

Acta Cryst. (1978). B34, 927-930

Sodium 5,6-Dihydro-2-thiouracil-6-sulfonate Monohydrate

By N. B. Jain, Byungkook Lee,* Kristin Bowman Mertes and Ian H. Pitman
Departments of Pharmaceutical Chemistry and Chemistry, The University of Kansas, Lawrence, Kansas 66045, $U S A$

(Received 8 July 1977; accepted 28 October 1977)

Abstract

C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Na}\), monoclinic, $P 2_{1} / c, Z=4, a$ $=13.101$ (4), $b=7.043$ (3), $c=9.654$ (5) $\AA, \beta=$ 101.98 (4) ${ }^{\circ}, D_{m}=1.90(1), D_{c}=1.90 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo}$ $K(x)=0.7107 \AA, R=0.033$ for 2045 observed reflections. This is the product of a bisulfite addition reaction of 2 -thiouracil at pH 8 . The sulfonate group is found attached axially at the 6 -position of the thiouracil.

Introduction. The title compound was prepared by addition of bisulfite ion to 2-thiouracil. Preliminary precession photographs of the crystals obtained from aqueous solution showed monoclinic symmetry and extinction patterns ($0 k 0$ reflections absent when k odd, $h 0 l$ reflections absent when l odd) consistent with the space group $P 2_{1} / c$. The calculated density for $Z=4$ agreed with the experimental density obtained by flotation in a monobromoethane-chloroform mixture. A small crystal $(0.4 \times 0.2 \times 0.2 \mathrm{~mm})$ was then mounted on a Syntex $P 2_{1}$ diffractometer. Accurate cell dimensions were determined from a least-squares fit of $2 \theta, \omega, \varphi$ and χ for 15 reflections with graphite-monochromated Mo $K \kappa$ radiation ($\lambda=0.71069 \AA$). Data were collected with a $\theta-2 \theta$ scan technique, the details of which have been reported (Seccombe, Lee \& Henry, 1975). 2642 reflections were measured with $2 \theta \leq 60^{\circ}$ of which 2045 had $I \geq 3 \sigma(I)$ and were used for data analysis. The data were then corrected for the 1.8% decay that was observed, and reduced to the structure factor amplitudes by the application of the Lorentzpolarization correction. Because of the small linear absorption coefficient, $3.39 \mathrm{~cm}^{-1}$, and the small size of the crystal, no absorption or extinction correction was made.

[^4]The positions of the S and Na atoms were found from a Patterson map. All other atoms, including H, were found in subsequent electron density and difference electron density maps. For the refinement, all non-hydrogen atoms were treated with anisotropic thermal parameters and all H atoms with fixed isotropic thermal parameters. The final discrepancy indices were $R_{1}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|=0.033$ and $R_{2}=\left[\Sigma w\left(\left|F_{o}\right|\right.\right.$ $\left.\left.-\left|F_{c}\right|\right)^{2} / \Sigma w\left|F_{o}\right|^{2}\right]^{1 / 2}=0.042$.

The positional and isotropic thermal parameters are given in Table 1 with their estimated standard

Table 1. Positional ($\times 10^{5}$; for $\mathrm{H} \times 10^{3}$) and isotropic thermal $\left(\AA^{2}\right)$ parameters with e.s.d.'s in parentheses

	x	y	z	B
S(1)	15760 (4)	73961 (8)	11856 (6)	1.24 (6)
S(2)	35651 (4)	23543 (7)	-4964 (5)	1.93 (5)
Na	49649 (7)	1112 (11)	25919 (9)	1.94 (9)
$\mathrm{O}(1)$	36431 (12)	5781 (22)	-12501 (16)	1.72 (17)
O(2)	43941 (11)	25652 (21)	7689 (14)	$2 \cdot 13$ (15)
O(3)	34528 (12)	39906 (23)	-14219 (16)	$2 \cdot 35$ (17)
O(4)	4164 (12)	32891 (25)	-29360 (15)	$2 \cdot 24$ (18)
$\mathrm{O}(w)$	40357 (13)	76443 (25)	12326 (17)	1.50 (18)
$\mathrm{N}(1)$	22447 (13)	39237 (26)	9063 (17)	1.84 (18)
$\mathrm{N}(3)$	10175 (14)	50569 (27)	-9873 (18)	1.34 (19)
C(2)	16249 (15)	53378 (29)	3377 (21)	1.47 (20)
C(4)	9205 (15)	33624 (31)	-17239 (20)	1.57 (21)
C(5)	14085 (16)	16806 (30)	-9085 (22)	1.58 (21)
C(6)	23815 (16)	21612 (29)	1978 (20)	2.08 (19)
$\mathrm{H}(w, 1)$	341 (3)	763 (5)	115 (4)	3.29
H(w, 2)	408 (3)	774 (5)	48 (4)	3.29
H(1)	258 (3)	414 (5)	163 (3)	$2 \cdot 12$
H(2)	63 (3)	609 (5)	-136(3)	2.85
H(5,1)	87 (3)	137 (5)	-43 (3)	2.34
H(5,2)	154 (3)	72 (4)	-154(3)	2.34
H(6)	251 (2)	112 (5)	89 (3)	2.06

[^0]: *Studies of the Rhenium-Oxygen Bond. IV.

[^1]: * Refinement was by a full-matrix least-squares method, using the program CUDLS, written locally by J. S. Stephens for the CDC-6400. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$.

[^2]: * Lists of observed and calculated structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33119 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography. 13 White Friars. Chester CH1 1NZ. England.

[^3]: * Bond order defined by Pauling equation, bond length $=A+$ $B \ln$ (bond order). A, B are defined by fixing $\mathrm{Re}-\mathrm{O}$ single and double bonds.

[^4]: * Author to whom correspondence should be addressed.

